Cardiac MRI: 3.0T Paul Finn, MD

David Geffen School of Medicine at UCLA

Acknowledgements

- o Stefan Ruehm, MD
- O Kambiz Nael, MD
- o Roya Saleh, MD
- o Anthony Ton, MD
- o Mayil Krishnam, MD
- o Sergio Godines, RT
- o Glen Nyborg, RT
- O Howard Dinh,MD
- o Carissa Fonseca, Ph
- o Gerhard Laub, PhD
- o Vibhas Deshpande, PhD
- o Hanns Weinmann, PhD

3 Tesla: <u>Advantages</u>	
T1.ssex.	
15 35 (T)	
Field Strength	

Cardiac MRI at 3.0T • Why? • Needs to compete favorably with cardiac MRI at 1.5T

General Trends at 3.0T vs 1.5T

Increased SAR \circ Limits flip angles and minimum TR for high-performance sequences o SSFP cine o Spin echo train imaging o CEMRA **Increased SNR** o Potential benefits for techniques which have borderline SNR o Perfusion imaging O Viability imaging with delayed enhancement ○ Coronary imaging **B1** Inhomogeneity o Shading in some regions o Inhomogeneous contrast in some regions o May make calibration of RF transmitter voltages difficult varying flip angles within body regions

Cine MRI at 3.0T vs 1.5T SSFP now the standard at 1.5T TrueFISP FIESTA Balanced FFE At 3.0T, SSFP cine is challenging

Cine MRI at 3.0T vs 1.5T

- o Ideal conditions for TrueFISP cine
 - o TR as short as possible
 - o Flip angle high and uniform
 - o Very homogeneous magnetic field
 - At 3.0T, all of these conditions are violated due to a combination of SAR, patientinduced susceptibility gradients and dielectric resonance effects

3T Functional Cardiac Imaging SSFP cine: off-resonance artifact

SAR-Limitations: Effects on TrueFISP cine

α = 30 deg

→ lower CNR

Current status of Cine MRI at 3.0T vs 1.5T

- SSFP cine at 3.0T is more sensitive to off-resonance effects than at 1.5T
- Can be 'managed' by attention to shim status and by adjusting frequency offsets on a slice-orientation basis
- In an individual case, may work; or may not

Contrast Enhancement in Infarction TTC MRI Ex-vivo comparison of TTC and Gd-enhanced MRI in infarcted myocardium courtesy of Dr. R. Judd, Northwestern University, Chicago

Summary

- O Promising results for cardiac MR @ 3T.
- O Limitations for SSFP cine
- The increased SNR is advantageous for viability imaging, dynamic angiography and perfusion imaging.
- O Areas to be addressed
 - protocols and sequence design with reduced SAR, reduced B1 sensitivity
 - Contrast agents?

3T Functional Cardiac Imaging

Gadomer, pig study. Schering AG, Inc.

3T Functional Cardiac Imaging

Gadomer, pig study. Schering AG, Inc.

3T Functional Cardiac Imaging

